Part Number Hot Search : 
LSM6DS33 B5012 BS804C SAA73 D74ALVC BU273 ADP3310 ER803
Product Description
Full Text Search
 

To Download ST7567 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Sitronix
1. INTRODUCTION
ST7567
65 x 132 Dot Matrix LCD Controller/Driver
ST7567 is a single-chip dot matrix LCD driver which incorporates LCD controller and common/segment drivers. ST7567 can be connected directly to a microprocessor with 8-bit parallel interface or 4-line serial interface (SPI-4). Display data sent from MPU is stored in the internal Display Data RAM (DDRAM) of 65x132 bits. The display data bits which are stored in DDRAM are directly related to the pixels of LCD panel. ST7567 contains 132 segment-outputs, 64 common-outputs and 1 icon-common-output. With built-in oscillation circuit and low power consumption power circuit, ST7567 generates LCD driving signal without external clock or power, so that it is possible to make a display system with the fewest components and minimal power consumption.
2. FEATURES
Single-chip LCD Controller & Driver On-chip Display Data RAM (DDRAM) Capacity: 65x132=8580 bits Directly display RAM pattern from DDRAM Selectable Display Duty (by SEL2 & SEL1) 1/65 duty : 65 common x 132 segment 1/55 duty : 55 common x 132 segment 1/49 duty : 49 common x 132 segment 1/33 duty : 33 common x 132 segment Microprocessor Interface Bidirectional 8-bit parallel interface supports: 8080-series and 6800-series MPU Serial interface (SPI-4) is also supported (write only) Abundant Functions Display ON/OFF, Normal/Reverse Display Mode, Set Display Start Line, Read IC Status, Set all Display Points ON, Set LCD Bias, Electronic Volume Control, Read-modify-Write, Select Segment Driver Direction, Power Saving Mode, Select Common Driver Direction, Select Voltage Regulator Resistor Ratio (for V0). External Hardware Reset Pin (RSTB) Built-in Oscillation Circuit No external component required Low Power Consumption Analog Circuit Voltage Booster (4X, 5X) High-accuracy Voltage Regulator for LCD Vop: (Thermal Gradient: -0.05%/ C) Voltage Follower for LCD Bias Voltage Wide Operation Voltage Range VDD1-VSS1=1.8V~3.3V VDD2-VSS2=2.4V~3.3V VDD3-VSS3=2.4V~3.3V Temperature Range: -30~85 C Package Type: COG
ST7567
6800 , 8080 , 4-Line
Sitronix Technology Corp. reserves the right to change the contents in this document without prior notice.
Ver 1.4b
1/49
2009/02/04
ST7567
3-1. ST7567 COG OUTLINE
Chip Size: 4840 X 660 Bump Height: 15 Part Number
12
Unit:
um
Chip Thickness 300
ST7567-G4 Bump Size PAD No. 1~12, 76~261 13~55, 65~75
10
35
27
Size 16 X 138.5 50 X 45 45 X 45
56~64 Bump Space (minimum) PAD No. 1~12, 76~87, 88~108, 109~240, 241~261 13~55, 65~75 56~64 55-56, 64-65
Space Refer to Fig 1 15 10 12.5
* Refer to section "PAD CENTER COORDINATES" for ITO layout.
Y
X
16 10 7.5 54 38 16
Fig 1. Chip Outline
Ver 1.4b 2/49 2009/02/04
35
11
ST7567
3-2. PAD CENTER COORDINATES
65 Duty
PAD NO. PIN Name X Y
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
COM[53] COM[54] COM[55] COM[56] COM[57] COM[58] COM[59] COM[60] COM[61] COM[62] COM[63] COMS1 CL CSB RSTB A0 RWR ERD VDDH D0 D1 D2 D3 D4 D5 D6 D7 VDD1 VDD1 VDD2 VDD2 VDD2 VDD3 VSS1 VSS1 VSS3 VSS2 VSS2 VSS2 V0in
-2363.00 -2336.00 -2309.00 -2282.00 -2255.00 -2228.00 -2201.00 -2174.00 -2147.00 -2120.00 -2093.00 -2066.00 -1970.00 -1905.00 -1840.00 -1775.00 -1710.00 -1645.00 -1580.00 -1515.00 -1450.00 -1385.00 -1320.00 -1255.00 -1190.00 -1125.00 -1060.00 -995.00 -930.00 -865.00 -800.00 -735.00 -670.00 -605.00 -540.00 -475.00 -410.00 -345.00 -280.00 -215.00
-74.25 -227.75 -74.25 -227.75 -74.25 -227.75 -74.25 -227.75 -74.25 -227.75 -74.25 -227.75 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50
Fig 2. PAD Location
Ver 1.4b
3/49
2009/02/04
ST7567
PAD NO. PIN Name X Y PAD NO. PIN Name X Y
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
V0in V0s V0out V0out XV0out XV0out XV0s XV0in XV0in VMO VMO VGin VGin VGs VGout T[6] T[7] T[8] TFCOM T[1] T[2] T[3] T[4] T[5] Vref VSSL VDDH C86 PSB SEL1 VSSL SEL2 VDD1 VDD2 VDD3 COM[31] COM[30] COM[29] COM[28] COM[27]
-150.00 -85.00 -20.00 45.00 110.00 175.00 240.00 305.00 370.00 435.00 500.00 565.00 630.00 695.00 760.00 820.00 875.00 930.00 985.00 1040.00 1095.00 1150.00 1205.00 1260.00 1320.00 1385.00 1450.00 1515.00 1580.00 1645.00 1710.00 1775.00 1840.00 1905.00 1970.00 2066.00 2093.00 2120.00 2147.00 2174.00
-274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -274.50 -74.25 -227.75 -74.25 -227.75 -74.25
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
COM[26] COM[25] COM[24] COM[23] COM[22] COM[21] COM[20] COM[19] COM[18] COM[17] COM[16] COM[15] COM[14] COM[13] COM[12] COM[11] COM[10] COM[9] COM[8] COM[7] COM[6] COM[5] COM[4] COM[3] COM[2] COM[1] COM[0] COMS2 SEG[0] SEG[1] SEG[2] SEG[3] SEG[4] SEG[5] SEG[6] SEG[7] SEG[8] SEG[9] SEG[10] SEG[11]
2201.00 2228.00 2255.00 2282.00 2309.00 2336.00 2363.00 2363.00 2336.00 2309.00 2282.00 2255.00 2228.00 2201.00 2174.00 2147.00 2120.00 2093.00 2066.00 2039.00 2012.00 1985.00 1958.00 1931.00 1904.00 1877.00 1850.00 1823.00 1768.50 1741.50 1714.50 1687.50 1660.50 1633.50 1606.50 1579.50 1552.50 1525.50 1498.50 1471.50
-227.75 -74.25 -227.75 -74.25 -227.75 -74.25 -227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25
Ver 1.4b
4/49
2009/02/04
ST7567
PAD NO. PIN Name X Y PAD NO. PIN Name X Y
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
SEG[12] SEG[13] SEG[14] SEG[15] SEG[16] SEG[17] SEG[18] SEG[19] SEG[20] SEG[21] SEG[22] SEG[23] SEG[24] SEG[25] SEG[26] SEG[27] SEG[28] SEG[29] SEG[30] SEG[31] SEG[32] SEG[33] SEG[34] SEG[35] SEG[36] SEG[37] SEG[38] SEG[39] SEG[40] SEG[41] SEG[42] SEG[43] SEG[44] SEG[45] SEG[46] SEG[47] SEG[48] SEG[49] SEG[50] SEG[51]
1444.50 1417.50 1390.50 1363.50 1336.50 1309.50 1282.50 1255.50 1228.50 1201.50 1174.50 1147.50 1120.50 1093.50 1066.50 1039.50 1012.50 985.50 958.50 931.50 904.50 877.50 850.50 823.50 796.50 769.50 742.50 715.50 688.50 661.50 634.50 607.50 580.50 553.50 526.50 499.50 472.50 445.50 418.50 391.50
227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
SEG[52] SEG[53] SEG[54] SEG[55] SEG[56] SEG[57] SEG[58] SEG[59] SEG[60] SEG[61] SEG[62] SEG[63] SEG[64] SEG[65] SEG[66] SEG[67] SEG[68] SEG[69] SEG[70] SEG[71] SEG[72] SEG[73] SEG[74] SEG[75] SEG[76] SEG[77] SEG[78] SEG[79] SEG[80] SEG[81] SEG[82] SEG[83] SEG[84] SEG[85] SEG[86] SEG[87] SEG[88] SEG[89] SEG[90] SEG[91]
364.50 337.50 310.50 283.50 256.50 229.50 202.50 175.50 148.50 121.50 94.50 67.50 40.50 13.50 -13.50 -40.50 -67.50 -94.50 -121.50 -148.50 -175.50 -202.50 -229.50 -256.50 -283.50 -310.50 -337.50 -364.50 -391.50 -418.50 -445.50 -472.50 -499.50 -526.50 -553.50 -580.50 -607.50 -634.50 -661.50 -688.50
227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25
Ver 1.4b
5/49
2009/02/04
ST7567
PAD NO. PIN Name X Y PAD NO. PIN Name X Y
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
SEG[92] SEG[93] SEG[94] SEG[95] SEG[96] SEG[97] SEG[98] SEG[99] SEG[100] SEG[101] SEG[102] SEG[103] SEG[104] SEG[105] SEG[106] SEG[107] SEG[108] SEG[109] SEG[110] SEG[111] SEG[112] SEG[113] SEG[114] SEG[115] SEG[116] SEG[117] SEG[118] SEG[119] SEG[120] SEG[121] SEG[122] SEG[123] SEG[124] SEG[125] SEG[126] SEG[127] SEG[128] SEG[129] SEG[130] SEG[131]
-715.50 -742.50 -769.50 -796.50 -823.50 -850.50 -877.50 -904.50 -931.50 -958.50 -985.50 -1012.50 -1039.50 -1066.50 -1093.50 -1120.50 -1147.50 -1174.50 -1201.50 -1228.50 -1255.50 -1282.50 -1309.50 -1336.50 -1363.50 -1390.50 -1417.50 -1444.50 -1471.50 -1498.50 -1525.50 -1552.50 -1579.50 -1606.50 -1633.50 -1660.50 -1687.50 -1714.50 -1741.50 -1768.50
227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
COM[32] COM[33] COM[34] COM[35] COM[36] COM[37] COM[38] COM[39] COM[40] COM[41] COM[42] COM[43] COM[44] COM[45] COM[46] COM[47] COM[48] COM[49] COM[50] COM[51] COM[52]
-1823.00 -1850.00 -1877.00 -1904.00 -1931.00 -1958.00 -1985.00 -2012.00 -2039.00 -2066.00 -2093.00 -2120.00 -2147.00 -2174.00 -2201.00 -2228.00 -2255.00 -2282.00 -2309.00 -2336.00 -2363.00
227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75 74.25 227.75
Note: 1. 2. Unit: um This is the default PAD Center Coordinate Table with 1/65 Duty. Other duty output mapping can be found in Section FUNCTION DESCRIPTION and Fig 9. 3. 4. 5. Tolerance: +/- 0.05 um. The definition of pin name is in full duty (65 duty). The definition of output pin name in different duty (55 Duty, 49 Duty and 33 Duty) please refers Fig 9.
Ver 1.4b
6/49
2009/02/04
ST7567
4. BLOCK DIAGRAM
Fig 3.
Block Diagram
Ver 1.4b
7/49
2009/02/04
ST7567
5. PIN DESCRIPTION
LCD Driver Output Pins
Pin Name Type LCD segment driver outputs. The display data and the frame control the output voltage. Display data SEG0 to SEG131 O H H L L Frame + + Segment Driver Output Voltage Normal Display VG VSS VSS VG VSS Inverse Display VSS VG VG VSS VSS 132 Description No. of Pins
Display OFF, Power Save LCD common driver outputs.
The internal scanning signal and the frame control the output voltage. Scan signal COM0 to COM63 O H H L L Frame + + Common Driver Output Voltage Normal Display Inverse Display XV0 V0 VM VM VSS 64
Display OFF, Power Save COMS1, COMS2 (COMS) LCD common driver outputs for icons. O
The output signals of these two pins are the same. When icon feature is not used, these pins should be left open.
2
Microprocessor Interface Pins
Pin Name RSTB CSB Type I I Description Hardware reset input pin. When RSTB is "L", internal initialization is executed and the internal registers will be initialized. Chip select input pin. Interface access is enabled when CSB is "L". When CSB is non-active (CSB="H"), D[7:0] pins are high impedance. It determines whether the access is related to data or command. A0 I A0="H" : Indicates that signals on D[7:0] are display data. A0="L" : Indicates that signals on D[7:0] are command. Read/Write execution control pin. When PSB is "H", C86 H RWR I L MPU Type 6800 series 8080 series RWR R/W R/W="H": read. R/W="L": write. Write enable input pin. /WR Signals on D[7:0] will be latched at the rising edge of /WR signal. 1 Description Read/Write control input pin. 1 No. of Pins 1 1
RWR is not used in serial interface and should fix to "H" by VDD1 or VDDH.
Ver 1.4b
8/49
2009/02/04
ST7567
Pin Name Type Description Read/Write execution control pin. When PSB is "H", C86 MPU Type ERD Description Read/Write control input pin. H 6800 series R/W="H": When E is "H", D[7:0] are in output E mode. R/W="L": Signals on D[7:0] are latched at the falling edge of E signal. L 8080 series /RD Read enable input pin. When /RD is "L", D[7:0] are in output mode. 1 No. of Pins
ERD
I
ERD is not used in serial interface and should fix to "H" by VDD1 or VDDH. When using 8-bit parallel interface: (6800 or 8080 mode) I/O 8-bit bi-directional data bus. Connect to the data bus of 8-bit microprocessor. When CSB is non-active (CSB="H"), D[7:0] pins are high impedance. D[7:0] I When using serial interface: 4-LINE D7=SDA : Serial data input. D6=SCL : Serial clock input. D[5:0] are not used and should connect to "H" by VDD1 or VDDH. When CSB is non-active (CSB="H"), D[7:0] pins are high impedance. Note: 1. After VDD1 is turned ON, any MPU interface pins cannot be left floating. 8
Configuration Pins
Pin Name VDDH VSSL PSB Type I I I Description Logic "1" level for option pins which should connected to "H". Logic "0" level for option pins which should connected to "L". PSB selects the interface type: Serial or Parallel. C86 selects the microprocessor type in parallel interface mode. PSB "H" C86 I "H" "L" C86 "H" "L" "X" Selected Interface Parallel 6800 Series MPU Interface Parallel 8080 Series MPU Interface Serial 4-Line SPI Interface 1 No. of Pins 2 2 1
Please refer to "APPLICATION NOTES" and "Microprocessor Interface" (Section 6) for detailed connection of the selected interface. These pins select the display duty and bias of ST7567. SEL2 "L" SEL[2:1] I "L" "H" "H" Note: 1. The detailed definition of output pin name can be found in Fig 9. SEL1 "L" "H" "L" "H" Duty 1/65 1/49 1/33 1/55 Bias 1/9 or 1/7 1/8 or 1/6 1/6 or 1/5 1/8 or 1/6 2
Ver 1.4b
9/49
2009/02/04
ST7567
Power System Pins
Pin Name VDD1 VDD2 VDD3 VSS1 VSS2 VSS3 Type Power Power Power Power Power Power Description Digital power. If VDD1=VDD2, connect to VDD2 externally. Analog power. If VDD1=VDD2, connect to VDD1 externally. Power for reference voltage circuit. Digital ground. Connect to VSS2 externally. Analog ground. Connect to VSS1 externally. Ground for reference voltage circuit. V0 is the LCD driving voltage for common circuits at negative frame. V0out V0in V0s Power V0out is the output of V0 regulator. V0s is the feedback of V0 regulator. V0in is the V0 input of common circuits. Be sure that: V0 VG > VM > VSS XV0 (under operation). V0out, V0in & V0s should be separated in ITO layout. V0out, V0in & V0s should be connected together in FPC layout. XV0 is the LCD driving voltage for common circuits at positive frame. XV0out XV0in XV0s Power XV0out is the output of XV0 regulator. XV0s is the feedback of XV0 regulator. XV0in is the V0 input of common circuits. XV0out, XV0in & XV0s should be separated in ITO layout. XV0out, XV0in & XV0s should be connected together in FPC layout. VG is the LCD driving voltage for segment circuits. VGout Vgin VGs Power Vgout is the output of VG regulator. VGs is the feedback of VG regulator. Vgin is the VG input of segment circuits. Vgout, Vgin & VGs should be separated in ITO layout. Vgout, Vgin & VGs should be connected together in FPC layout. 1.6 VG < VDD2. VMO Power VM is the LCD driving voltage for common circuits. 0.8V VM < VDD2. 2 1 2 1 2 2 1 2 2 1 No. of Pins 3 4 2 2 3 1
Test Pins
Pin Name Vref T1~T8 TFCOM CL Type T T T T Test pin for power system. This pin must be left open (without any kinds of connection). Do NOT use. Reserved for testing. Must be floating. Do NOT use. Reserved for testing. Must be floating. Do NOT use. Reserved for testing. Must be floating. Description No. of Pins 1 8 1 1
Ver 1.4b
10/49
2009/02/04
ST7567
Recommend ITO Resistance
Pin Name VMO, Vref, T[1:8], TFCOM, CL VDD1, VDD2, VDD3, VSS1, VSS2, VSS3 V0(V0in, V0out, V0s), VG(Vgin, Vgout, VGs), XV0(XV0in, XV0out, XV0s) A0, RWR, ERD, CSB, D[7:0] PSB, C86, SEL[2:1] RSTB Note: 1. 2. 3. To prevent the ESD pulse resetting the internal register, applications should increase the resistance of RSTB signal (add a series resistor or increase ITO resistance). The value is different from modules. The option setting to be "H" should connect to VDD1 or VDDH. The option setting to be "L" should connect to VSS1 or VSSL.
*1
ITO Resistance Floating < 100 < 300 < 1K < 5K < 10K
Ver 1.4b
11/49
2009/02/04
ST7567
FUNCTION DESCRIPTION
Microprocessor Interface
Chip Select Input
CSB pin is used for chip selection. When CSB is "L", the microprocessor interface is enabled and ST7567 can interface with an MPU. When CSB is "H", the inputs of A0, ERD and RWR with any combination will be ignored and D[7:0] are high impedance. In 4-Line serial interface, the internal shift register and serial counter are reset when CSB is "H".
Interface Selection
The interface selection is controlled by C86 and PSB pins. The selection for parallel or serial interface is shown in Table 1.
Table 1. Parallel/Serial Interface Mode
PSB "H" "H" "L" C86 CSB A0 ERD RWR D[7:0] MPU Interface "H" E R/W 6800-series parallel interface D[7:0] CSB A0 "L" /RD /WR 8080-series parallel interface "X" ----Refer to serial interface. 4-Line SPI interface The un-used pins are marked as "---" and should be fixed to "H" by VDD1 or VDDH.
Parallel Interface
When PSB= "H", the 8-bit bi-directional parallel interface is enabled and the type of MPU is selected by "C86" pin as shown in Table 2. The data transfer type is determined by signals on A0, ERD and RWR as shown in Table 3.
Table 2. Microprocessor Selection for Parallel Interface
PSB "H" "H" C86 "H" "L" CSB CSB A0 A0 ERD E /RD RWR R/W /WR D[7:0] D[7:0] MPU Interface 6800-series parallel interface 8080-series parallel interface
Table 3. Parallel Data Transfer Type
Common Pins CSB "L" A0 "H" "H" "L" "L" 6800-Series E (ERD) "H" "H" "H" "H" R/W (RWR) "H" "L" "H" "L" 8080-Series /RD (ERD) "L" "H" "L" "H" /WR (RWR) "H" "L" "H" "L" Description Display data read out Display data write Internal status read Writes to internal register (instruction)
Setting Serial Interface
Serial Mode PSB C86 CSB A0 ERD RWR D[7:0] 4-Line SPI interface "L" X CSB A0 ----SDA, SCLK, ---, ---, ---, ---, ---, --* The un-used pins are marked as "---" and should be fixed to "H" by VDD1 or VDDH. * C86 is marked as "X" and can be fixed to "H" or "L".
Note: 1. 2. The option setting to be "H" should connect to VDD1 or VDDH. The option setting to be "L" should connect to VSS1 or VSSL.
Ver 1.4b
12/49
2009/02/04
ST7567
4-line SPI interface (PSB="L", C86="H" or "L")
When ST7567 is active (CSB="L"), serial data (SDA) and serial clock (SCLK) inputs are enabled. When ST7567 is not active (CSB="H"), the internal 8-bit shift register and 3-bit counter are reset. Serial data on SDA is latched at the rising edge of serial clock on SCLK. After the 8 serial clock, the serial data will be processed to be 8-bit parallel data. The address selection pin (A0), which is latched at the 8 clock, indicates the 8-bit parallel data is display data or instruction. The 8-bit parallel data will be display data when A0 is "H" and will be instruction when A0 is "L". The read feature is not available in this mode. The DDRAM column address pointer will be increased by one automatically after each byte of DDRAM access. Please note that the SCLK signal quality is very important and external noise maybe causes unexpected data/instruction latch.
th th
Fig 4.
4-Line SPI Access
Note: Some MPU will set the interface to be Hi-Z (high impedance) mode when power saving mode or after hardware reset. This is not allowed when the VDD1of ST7567 is turned ON. Because the floating input (especially for those control pins such as CSB, RSTB, RWR or ERD...) maybe cause abnormal latch and cause abnormal display.
Ver 1.4b
13/49
2009/02/04
ST7567
Data Transfer
ST7567 uses bus latch and internal data bus for interface data transfer. When writing data from MPU to the DDRAM, data is automatically transferred from the bus latch to the DDRAM as shown in Fig 5. When reading data from the on-chip DDRAM to MPU, the first read cycle reads the content in bus latch (dummy read) and the data that MPU should read will be output at the next read cycle as shown in Fig 6. That means: after setting the target address, a dummy read cycle is required before the following read-operation. Therefore, the data of the specified address cannot be read at the first read of display data right after setting the address, but can be read at the second read of display data.
Fig 5.
Data Transfer : Write
Fig 6.
Data Transfer : Read
Ver 1.4b
14/49
2009/02/04
ST7567
Display Data RAM (DDRAM)
ST7567 is built-in a RAM with 65X132 bit capacity which stores the display data. The display data RAM (DDRAM) store the dot data of the LCD. It is an addressable array with 132 columns by 65 rows (8-page with 8-bit and 1-page with 1-bit). The X-address is directly related to the column output number. Each pixel can be selected when the page and column addresses are specified (please refer to Fig 7 for detailed illustration). The rows are divided into: 8 pages (Page-0 ~ Page-7) each with 8 lines (for COM0~63) and Page-8 with only 1 line (COMS, for icon). The display data (D7~D0) corresponds to the LCD common-line direction and D0 is on top. All pages can be accessed through D[7:0] directly except icon page. Icon RAM uses only 1-bit of data bus (D0). Refer to Fig 8 for detailed illustration. The microprocessor can write to and read from (only Parallel interfaces) DDRAM by the I/O buffer. Since the LCD controller operates independently, data can be written into DDRAM at the same time as data is being displayed without causing the LCD flicker or data-conflict.
Fig 7.
DDRAM Mapping Mode (Default Setting)
Fig 8.
DDRAM Format
Ver 1.4b
15/49
2009/02/04
ST7567
Addressing
Data is downloaded into the Display Data RAM matrix in ST7567 as byte-format. The Display Data RAM has a matrix of 65 by 132 bits. The address ranges are: X=0~131 (column address), Y=0~8 (page address). Addresses outside these ranges are not allowed.
Page Address Circuit
This circuit provides the page address of DDRAM. It incorporates 4-bit Page Address Register which can be modified by the "Page Address Set" instruction only. The Page Address must be set before accessing DDRAM content. Page Address "8" is a special RAM area for the icons with only one valid bit: D0.
Column Address Circuit
The column address of DDRAM is specified by the Column Address Set command. The column address is increased (+1) after each display data access (read/write). This allows MPU accessing DDRAM content continuously. This feature stops at the end of each page (Column Address "83h") because the Column Address and Page Address circuits are independent. For example, both Page Address and Column Address should be assigned for changing the DDRAM pointer from (Page-0, Column-83h) to (Page-1, Column-0). Furthermore, Register MX and MY makes it possible to invert the relationship between the DDRAM and the outputs (COM/SEG). It is necessary to rewrite the display data into DDRAM after changing MX setting.
Ver 1.4b
16/49
2009/02/04
ST7567
The relation between DDRAM and outputs with different MX or MY setting is shown below.
Fig 9.
DDRAM and Output Map (COM/SEG)
Ver 1.4b
17/49
2009/02/04
ST7567
Line Address Circuit
The Line Address Circuit incorporates a counter and a Line Address register which is changed only by the "Display Start Line Set" instruction. This circuit assigns DDRAM a Line Address corresponding to the first display line (COM0). Therefore, by setting Line Address repeatedly, ST7567 can realize the screen scrolling without changing the contents of DDRAM as shown in Fig 10. The last common is always the COMS (common output for the icons). That means the icons will never scroll with the general display data.
83 82 81 80 7F 7E 7D 7C 7B
08 07 06 05 04 03 02 01 00
7B 7C 7D 7E 7F 80 81 82 83
00 01 02 03 04 05 06 07 08
64 Lines
Line Address (Hex), Start Line S[6:0] = 0x1C
Start
109 110 111 112 113 114 115 116 117
Fig 10.
Start Line Function
Ver 1.4b
18/49
S123 S124 S125 S126 S127 S128 S129 S130 S131
S0 S1 S2 S3 S4 S5 S6 S7 S8
232 233 234 235 236 237 238 239 240
2009/02/04
ST7567
Display Data Latch Circuit
The display data latch circuit latches temporarily display data of each segment output which will be output at the next clock. The special functions such as reverse display, display OFF and display all points ON only change the data in the latch and the content in the Display Data RAM is not changed.
Oscillation Circuit
The built-in oscillation circuit generates the system clock for the liquid crystal driving circuit. The oscillation circuit is enabled after initializing ST7567. The clock will not be output to reduce the power consumption.
Liquid Crystal Driver Power Circuit
The built-in power circuits generate the voltage levels which are necessary to drive the liquid crystal. It consumes low power with the fewest external components. The built-in power system has voltage booster, voltage regulator and voltage follower circuits. Before power ST7567 OFF, a Power OFF procedure is needed (please refer to the OPERATION FLOW section).
External Components of Power Circuit
The recommended external power components need only 2 capacitors. The detailed values of these two capacitors are determined by the panel size and loading.
IC Internal V0 Generator VG Grnerator VDD2 VSS2 XV0 Generator
Fig 11. Regulator Circuit
IC External V0
C2 R1
VG
C1
C1: 0.1uF~1.0uF (Non-Polar/6V) C2: 0.1uF~1.0uF (Non-Polar/16V) R1: Reserved (Default NC)
VSS2 XV0
Power Circuit
The built-in high accuracy regulation circuit has 8 regulation ratios and each one has 64 EV-levels for voltage adjustment. Without additional external component, the output voltage can be changed by instructions such as "Regulation Ratio" and "Set EV". The detailed setting method can be found in the INSTRUCTION DESCRIPTION section.
Ver 1.4b
19/49
2009/02/04
ST7567
RESET CIRCUIT
Setting RSTB to "L" can initialize internal function. While RSTB is "L", no instruction except read status can be accepted. RSTB pin must connect to the reset pin of MPU and initialization by RSTB pin is essential before operating. Please note the hardware reset is not same as the software reset. When RSTB becomes "L", the hardware reset procedure will start. When RESET instruction is executed, the software reset procedure will start. The procedure is listed below: Procedure Display OFF: D=0, all SEGs/COMs output at VSS Normal Display: INV=0, AP=0 SEG Normal Direction: MX=0 Clear Serial Counter and Shift Register (if using Serial Interface) Bias Selection: BS=0 Booster Level BL=0 Exit Power Saving Mode Power Control OFF: VB=0, VR=0, VF=0 Exit Read-modify-Write mode Start Line S[5:0]=0 Column Address X[7:0]=0 Page Address Y[3:0]=0 COM Normal Direction: MY=0 V0 Regulation Ratio RR[2:0]=(1,0,0) EV[5:0]=(1,0,0,0,0,0) Exit Test Mode Hardware Reset V V V V V V V V V V V V V V V V Software Reset X X X X X X X X V V V V V V V V
After power-on, RAM data are undefined and the display status is "Display OFF". It's better to initialize whole DDRAM (ex: fill all 00h or write the display pattern) before turning the Display ON. Besides, the power is not stable at the time that the power is just turned ON. A hardware reset is needed to initialize those internal registers after the power is stable.
Ver 1.4b
20/49
2009/02/04
ST7567
8. INSTRUCTION TABLE
INSTRUCTION (1) Display ON/OFF (2) Set Start Line (3) Set Page Address (4) Set Column Address (5) Read Status (6) Write Data (7) Read Data (8) SEG Direction (9) Inverse Display (10) All Pixel ON (11) Bias Select (12) Read-modify-Write (13) END (14) RESET (15) COM Direction (16) Power Control (17) Regulation Ratio (18) Set EV A0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 (19) Set Booster (20) Power Save (21) NOP (22) Test 0 0 0 0 R/W (RWR) 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 COMMAND BYTE D7 1 0 1 0 0 0 D7 D7 1 1 1 1 1 1 1 1 0 0 1 0 1 0 D6 0 1 0 0 0 MX D6 D6 0 0 0 0 1 1 1 1 0 0 0 0 1 0 D5 1 S5 1 0 0 D D5 D5 1 1 1 1 1 1 1 0 1 1 0 EV5 1 0 D4 0 S4 1 1 0 RST D4 D4 0 0 0 0 0 0 0 0 0 0 0 EV4 1 0 D3 1 S3 Y3 X7 X3 0 D3 D3 0 0 0 0 0 1 0 MY 1 0 0 EV3 1 0 D2 1 S2 Y2 X6 X2 0 D2 D2 0 1 1 0 0 1 0 VB RR2 0 EV2 0 0 D1 1 S1 Y1 X5 X1 0 D1 D1 0 1 0 1 0 1 1 VR RR1 0 EV1 0 0 D0 D S0 Y0 X4 X0 0 D0 D0 MX INV AP BS 0 0 0 VF DESCRIPTION D=1, display ON D=0, display OFF Set display start line Set page address Set column address (MSB) Set column address (LSB) Read IC Status Write display data to RAM Read display data from RAM Set scan direction of SEG MX=1, reverse direction MX=0, normal direction INV =1, inverse display INV =0, normal display AP=1, set all pixel ON AP=0, normal display Select bias setting 0=1/9; 1=1/7 (at 1/65 duty) Column address increment: Read:+0 , Write:+1 Exit Read-modify-Write mode Software reset Set output direction of COM MY=1, reverse direction MY=0, normal direction Control built-in power circuit ON/OFF
RR0 Select regulation resistor ratio 1 Double command!! Set EV0 electronic volume (EV) level 0 BL Double command!! Set booster level: BL=0: 4X BL=1: 5X Display OFF + All Pixel ON No operation Do NOT use. Reserved for testing.
Compound Command 1 1 0 1 0 1 0 1 1 1 1 -
Note: Symbol "-" means this bit can be "H" or "L".
Ver 1.4b
21/49
2009/02/04
ST7567
9. INSTRUCTION DESCRIPTION
Display ON/OFF
The D flag selects the display mode. D7 A0 R/W(RWR) 0 0 1 D6 0 D5 1 D4 0 D3 1 D2 1 D1 1 D0 D
D=1: Normal Display Mode. D=0: Display OFF. All SEGs/COMs output with VSS.
Set Start Line
This instruction sets the line address of the Display Data RAM to determine the initial display line. The display data of the specified line address is displayed at the top row (COM0) of the LCD panel. D7 D6 D5 D4 D3 D2 D1 D0 A0 R/W(RWR) 0 S5 0 0 0 0 : 1 1 1 0 S4 0 0 0 0 : 1 1 1 S3 0 0 0 0 : 1 1 1 0 S2 0 0 0 0 : 1 1 1 1 S1 0 0 1 1 : 0 1 1 S5 S0 0 1 0 1 : 1 0 1 S4 S3 Line address 0 1 2 3 : 61 62 63 S2 S1 S0
Set Page Address
Y [3:0] defines the Y address vector address of the display RAM. A0 R/W(RWR) D7 D6 D5 D4 0 Y3 0 0 0 : 0 0 1 Y2 0 0 0 : 1 1 0 0 Y1 0 0 1 : 1 1 0 1 Y0 0 1 0 : 0 1 0 0 1 1 D3 Y3 Valid Bit D0~ D7 D0~ D7 D0~ D7 : D0~ D7 D0~ D7 D0 D2 Y2 D1 Y1 D0 Y0
Page Address Page0 Page1 Page2 : Page6 Page7 Page8 (icon page)
Ver 1.4b
22/49
2009/02/04
ST7567
Set Column Address
The range of column address is 0...131. The parameter is separated into 2 instructions. The column address is increased (+1) after each byte of display data access (read/write). This allows MPU accessing DDRAM content continuously. This feature stops at the end of each page (Column Address "83h"). D7 D6 D5 D4 D3 D2 D1 D0 A0 R/W(RWR) 0 A0 0 X7 0 0 0 0 : 1 1 1 X6 0 0 0 0 : 0 0 0 0 R/W(RWR) 0 X5 0 0 0 0 : 0 0 0 0 D7 0 X4 0 0 0 0 : 0 0 0 X3 0 0 0 0 : 0 0 0 0 D6 0 X2 0 0 0 0 : 0 0 0 0 D5 0 X1 0 0 1 1 : 0 1 1 X0 0 1 0 1 : 1 0 1 1 D4 0 X7 D3 X3 Column address 0 1 2 3 : 129 120 131 X6 D2 X2 X5 D1 X1 X4 D0 X0
Read Status
Read the internal status of ST7567. The read function is not available in serial interface mode. D7 D6 D5 D4 D3 D2 A0 R/W(RWR) 0 Flag MX D RST MX=0: Normal direction (SEG0->SEG131) MX=1: Reverse direction (SEG131->SEG0) D=0: Display ON D=1: Display OFF RST=1: During reset (hardware or software reset) RST=0: Normal operation 1 0 MX D RST Description 0 0 D1 0 D0 0
Write Data
8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address and page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data to the addressed page. During auto-increment, the column address wraps to 0 after the last column is written. A0 R/W(RWR) D7 D6 D5 D4 D3 D2 D1 D0 1 0 Write Data
Read Data
8-bit data of Display Data from the RAM location specified by the column address and page address can be read to the microprocessor. The read function is not available in serial interface mode. A0 R/W(RWR) D7 D6 D5 D4 D3 D2 D1 D0 1 1 Read Data
Ver 1.4b
23/49
2009/02/04
ST7567
SEG Direction
A0 0 Flag MX MX=0: Normal direction (SEG0->SEG131) MX=1: Reverse direction (SEG131->SEG0) R/W(RWR) 0 D7 1 D6 0 D5 1 D4 0 Description D3 0 D2 0 D1 0 D0 MX
Inverse Display
This instruction changes the selected and non-selected voltage of SEG. The display will be inversed (white -> Black, Black -> White) while the display data in the Display Data RAM is never changed. A0 0 Flag INV INV=0: Normal display INV =1: Inverse display R/W(RWR) 0 D7 1 D6 0 D5 1 D4 0 Description D3 0 D2 1 D1 1 D0 INV
All Pixel ON
This instruction will let all segments output the selected voltage and make all pixels turned ON. A0 0 Flag AP AP =0: Normal display AP =1: All pixels ON R/W(RWR) 0 D7 1 D6 0 D5 1 D4 0 Description D3 0 D2 1 D1 0 D0 AP
Bias Select
Select LCD bias ratio of the voltage required for driving the LCD. D7 D6 D5 D4 A0 R/W(RWR) 0 0 1 0 1 0 D3 0 D2 0 D1 1 D0 BS
Duty 1/65 1/49 1/33 1/55
Bias BS=0 1/9 1/8 1/6 1/8 BS=1 1/7 1/6 1/5 1/6
Reference LCD Bias Voltage (1/65 Duty with 1/9 Bias) Symbol V0 VG VM VSS Bias Voltage V0 2/9 x V0 1/9 x V0 VSS
Please Note: * VG range: 1.24V VG < VDD2. * VM range: 0.62V VM < VDD2.
Ver 1.4b
24/49
2009/02/04
ST7567
Read-modify-Write
This command is used paired with the "END" instruction. Once this command has been input, the display data read operation will not change the column address, but only the display data write operation will increase the column address (X[7:0]+1). This mode is maintained until the END command is input. This function makes it possible to reduce the load on the MPU when there are repeating data changes in a specified display region, such as a blanking cursor. D7 D6 D5 D4 D3 D2 D1 D0 A0 R/W(RWR) 0 0 1 1 1 0 0 0 0 0 In Read-modify-Write mode, other instructions aside from display data read/write commands can also be used.
Read-Modify-Write Page Address Set Column Address Set Read-Modify-Write Cycle Dummy Read Data Read
No
Modify Data Data Write (at same Address)
Finished?
Yes
Done
END
When the END command is input, the Read-modify-Write mode is released and the column address returns to the address it was when the Read-modify-Write instruction was entered. A0 R/W(RWR) D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 1 0 1 1 1 0
RESET
This instruction resets Start Line (S[5:0]), Column Address (X[7:0]), Page Address (Y[3:0]) and COM Direction (MY) to their default setting. Please note this instruction is not complete same as hardware reset (RSTB=L) and cannot initialize the built-in power circuit which is initialized by the RSTB pin. The detailed information is in "Section RESET CIRCUIT". A0 R/W(RWR) D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 1 0 0 0 1 0
Ver 1.4b
25/49
2009/02/04
ST7567
COM Direction
This instruction controls the common output status which changes the vertical display direction. The detailed information can be found in Fig 9. D7 D6 D5 D4 D3 D2 D1 D0 A0 R/W(RWR) 0 Flag MY MY=0: Normal direction (COM0->COM63) MY=1: Reverse direction (COM63->COM0) 0 1 1 0 0 Description MY -
Power Control
This instruction controls the built-in power circuits. Typically, these 3 flags are turned ON at the same time. D7 D6 D5 D4 D3 D2 D1 A0 R/W(RWR) 0 Flag VB VR VF VB=0: Built-in Booster OFF VB=1: Built-in Booster ON VR=0: Built-in Regulator OFF VR=1: Built-in Regulator ON VF=0: Built-in Follower OFF VF=1: Built-in Follower ON 0 0 0 1 0 Description 1 VB VR D0 VF
Regulation Ratio
This instruction controls the regulation ratio of the built-in regulator. A0 R/W(RWR) D7 D6 D5 D4 0 RR2 0 0 0 0 1 1 1 1 RR1 0 0 1 1 0 0 1 1 0 RR0 0 1 0 1 0 1 0 1 0 0 1 0 D3 0 D2 RR2 D1 RR1 D0 RR0
Regulation Ratio (RR) 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
The operation voltage (V0) calculation formula is shown below: (RR comes from Regulation Ratio, EV comes from EV[5:0]) V0 = RR X [ 1 - (63 - EV) / 162 ] X 2.1, or V0 = RR X [ ( 99 + EV ) / 162 ] X 2.1 SYMBOL RR EV REGISTER RR[2:0] EV[5:0] VALUE 3, 3.5, 4, 4.5, 5, 5.5, 6 and 6.5 0~63
Ver 1.4b
26/49
2009/02/04
ST7567
Set EV
This is double byte instruction. The first byte set ST7567 into EV adjust mode and the following instruction will change the EV setting. That means these 2 bytes must be used together. They control the electronic volume to adjust a suitable V0 voltage for the LCD. D7 D6 D5 D4 D3 D2 D1 D0 A0 R/W(RWR) 0 0 0 0 1 0 0 0 0 EV5 0 EV4 0 EV3 0 EV2 0 EV1 1 EV0
Electronic Volume Set
Set EV (byte-1) (0x81)
Set EV (byte-2) (depends on requirement)
No
Set Complete?
Yes
Done
The maximum voltage that can be generated is dependent on the VDD2 voltage and the loading of LCD module. There are 8 V0 voltage curve can be selected. It is recommended the EV should be close to the center (1FH) for easy contrast adjustment. Please refer to the "Selection of Application Voltage" section for detailed information.
EV[5:0] and RR[2:0] vs. V0 Voltage Fig 21 Setting V0 Voltage
Ver 1.4b
27/49
2009/02/04
ST7567
Power Save (Compound Instruction)
This is compound instruction. The 1 instruction is Display OFF (D=0) and the 2 instruction is All Pixel ON (AP=1). The Power Save mode starts the following procedure: (the display data and register settings are still kept except D-Flag and AP-Flag) 1. Stops internal oscillation circuit; 2. Stops the built-in power circuits; 3. Stops the LCD driving circuits and keeps the common and segment outputs at VSS.
Normal Mode Power Save Mode
st nd
Display OFF (AEH)
Cancel All Pixel ON (A4H)
All Pixel ON (A5H)
Display ON (AFH)
Power Save Mode
Normal Mode
Enter Power Save Mode
Exit Power Save Mode
After exiting Power Save mode, the settings will return to be as they were before.
Set Booster
This is double byte instruction. The first byte set ST7567 into booster configuration mode and the following instruction will change the booster setting. That means these 2 bytes must be used together. They control the built-in booster circuit to provide the power source of the built-in regulator. ST7567 booster is built-in booster capacitors. The only external component is a keep capacitor between V0 and XV0. Booster level can be changed with instruction only without changing hardware connection. A0 R/W(RWR) D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 BL
Booster Ratio Set Set Booster (byte-1) (F8H)
BL 0 1
Boost Level X4 X5
Set Booster (byte-2) (depends on requirement)
No
Set Complete?
Yes
Done
NOP
"No Operation" instruction. ST7567 will do nothing when receiving this instruction. A0 R/W(RWR) D7 D6 D5 D4 D3 0 0 1 1 1 0 0 D2 0 D1 1 D0 1
Test
The test mode is reserved for IC testing. Please don't use this instruction. If the test mode is enabled accidentally, it can be cleared by: issuing an "L" pulse on RSTB pin, issuing RESET instruction or issuing NOP instruction. A0 R/W(RWR) D7 D6 D5 D4 D3 D2 D1 D0 0 0 Note: "-" means "1" or "0". 1 1 1 1 1 1 1 -
Ver 1.4b
28/49
2009/02/04
ST7567
10. OPERATION FLOW
This section introduces some reference operation flows.
Power ON
Refferrenttiialll Operrattiion Flllow Refe re ntia Opera tio n F o w Re e en a Ope a on F ow
Power ON Wait power stable, t>1ms (depends on system power) Keep RSTB=L ...*1 Wait reset start, t>5us Set RSTB=H ...*1 Wait reset finished, t>5us Default State ......*2 Function Set (by user) (11) Bias Select (8) SEG Direction (15) COM Direction Function Set (by user) (17) Regulation Ratio (18) Set EV Function Set (by user) (16) Power Control Initialize DDRAM (Page 0~8) [ Display ON ] Normal Operating
Arrange to execute all these procedures from releasing the reset state to setting the Power Control within 5ms. In case of other models, execute these procedures from turning ON the power to setting the Power Control in 5ms. ......*3
Operrattiion Sequence Opera tio n Sequence Ope a on Sequence Case 1: RSTB=L while Power ON
Case 2: RSTB=H while Power ON
VDDI
(VDD1)
VDD1 * 50%
VDD1 * 90%
VDDA
(VDD2,VDD3)
tON-V2
VDD2 * 50%
VDD2 * 90%
RSTB
tON-RST
tRW
VIL
Note: The detailed description can be found in the respective sections listed below. 1. 2. 3. 4. 5. Please refer to the timing specification of tRW and tR. Refer to Section RESET CIRCUIT. The 5ms requirement depends on the characteristics of LCD panel and the external component of the power circuit. It is recommended to check with the real products with external component. The detailed instruction functionality is described in Section 9. INSTRUCTION DESCRIPTION; Power stable is defined as the time that the later power (VDDI or VDDA) reaches 90% of its rated voltage.
Timing Requirement: Item VDDA power delay Symbol tON-V2 Requirement 0 tON-V2 Note Applying VDDI and VDDA in any order will not damage IC. If RSTB is Low, High or unstable during power ON, a successful hardware reset by RSTB is required after VDDI is stable. RSTB input time tON-RST No Limitation RSTB=L can be input at any time after power is stable. tRW & tR should match the timing specification of RSTB. To prevent abnormal display, the recommended timing is: 0 tON-RST 30 ms. The requirement listed here is to prevent abnormal display on LCD module.
Ver 1.4b
29/49
2009/02/04
ST7567
Display Data
Write Display Data (After Initialized)
Function setup by command (user setting) (2) Display Start Line Set (3) Page Address Set (4) Column Address Set
Data setup by Data Write (6) Display Data Write Function setup by command (user setting) (1) Display ON/OFF
End of Write Display Data
Notes: Reference items 1. 2. The detailed instruction functionality is described in Section 9. INSTRUCTION DESCRIPTION; It is recommended to write display data (initialize DDRAM) before Display ON.
Refresh
It is recommended to use the refresh sequence regularly in a specified interval.
Ver 1.4b
30/49
2009/02/04
ST7567
Power-Save Flow and Sequence
ENTERING THE POWER SAVE MODE
Normal Mode Display OFF (AEH) All Pixel ON (A5H) Power Save Mode Enter Power Save Mode
EXITING THE POWER SAVE MODE
Power Save Mode
Cancel All Pixel ON (A4H)
Display ON (AFH)
Normal Mode
Exit Power Save Mode
INTERNAL SEQUENCE of EXIT POWER SAVE MODE After receiving "PD=0", the internal circuits (Power) will starts the following procedure.
Note: 1. 2. The power stable time is determined by LCD panel loading. The power stable time in this figure is base on: LCD Panel Size = 1.4" with C1=1uF, C2=1uF (VDD=2.7V, Vop=9V).
Ver 1.4b
31/49
2009/02/04
ST7567
Power OFF Flow and Sequence
In power save mode, LCD outputs are fixed to VSS and all analog outputs are discharged. The power can be turned OFF after ST7567 is in the power save mode. The power save mode can be triggered by the following two methods. Refferrenttiialll Powerr OFF Flllow Refe re ntia Power OFF F o w Re e en a Powe OFF F ow Operrattiion Sequence Opera tio n Sequence Ope a on Sequence
CASE 1: Use Power Save Instruction
Normal Mode
Display OFF (AEH)
All Pixel ON (A5H)
Wait 250ms
Turn VDD1~VDD3 OFF
Power OFF
Power OFF Flow
Instruction Flow After the built-in power circuits are OFF and completely discharged, the power (VDDI, VDDA) can be removed. CASE 2: Use Hardware Reset Function
Normal Mode
Set RSTB=L (wait > tRW) Set RSTB=H
Wait 250ms
Turn VDD1~VDD3 OFF
Power OFF
Power OFF Flow
Instruction Flow After the built-in power circuits are OFF and completely discharged, the power (VDDI, VDDA) can be removed. Note: 1. 2. 3. tPOFF: Internal Power discharge time. => 250ms (max). tV2OFF: Period between VDDI and VDDA OFF time. => 0 ms (min). It is NOT recommended to turn VDDI OFF before VDDA. Without VDDI, the internal status cannot be guaranteed and internal discharge-process maybe stopped. The un-discharged power maybe flows into COM/SEG output(s) and the liquid crystal in panel maybe polarized. 4. 5. 6. 7. IC will NOT be damaged if either VDDI or VDDA is OFF while another is ON. The timing is dependent on panel loading and the external capacitor(s). The timing in these figures is base on the condition that: LCD Panel Size = 1.4" with C1=1uF, C2=1uF. When turning VDDA OFF, the falling time should follow the specification: 20ms tPfall 0.2sec Ver 1.4b 32/49 2009/02/04
ST7567
11. LIMITING VALUES
In accordance with the Absolute Maximum Rating System; please refer to notes 1 and 2. Parameter Digital Power Supply Voltage Analog Power supply voltage LCD Power supply voltage LCD Power supply voltage LCD Power supply voltage Input Voltage Operating temperature Storage temperature Symbol VDD1 VDD2, VDD3 V0-XV0 VG VM Vi TOPR TSTR Conditions -0.3 ~ 3.6 -0.3 ~ 3.6 -0.3 ~ 16 -0.3 ~ 3.6 -0.3 ~ VDD2 -0.3 ~ VDD1+0.3 -30 to +85 -55 to +125 Unit V V V V V V

C C
Notes 1. 2. 3. Stresses above those listed under Limiting Values may cause permanent damage to the device. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted. Insure the voltage levels of V0, VDD2, VG, VM, VSS and XV0 always match the correct relation: V0 VDD2 > VG > VM > VSS XV0
Ver 1.4b
33/49
2009/02/04
ST7567
12. HANDLING
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices.
13. DC CHARACTERISTICS
VSS=0V; Tamb = -30 C to +85 C; unless otherwise specified. Item Operating Voltage (1) Operating Voltage (2) Operating Voltage (3) Input High-level Voltage Input Low-level Voltage Output High-level Voltage Output Low-level Voltage Input Leakage Current Output Leakage Current Symbol VDD1 VDD2 VDD3 VIHC VILC VOHC VOLC ILI ILO Vop=8.5V, Liquid Crystal Driver ON Resistance RON Ta=25 C

Condition
Rating Min. 1.7 2.4 2.4 0.7 x VDD1 VSS1 Typ. -- -- -- -- -- -- -- -- -- 0.6 1.3 75 Max. 3.3 3.3 3.3 VDD1 0.3 x VDD1 VDD1 0.2 x VDD1 1.0 3.0 0.8 1.5 80
Unit V V V V V V V A A K K Hz
Applicable Pin VDD1 VDD2 VDD3 MPU Interface MPU Interface D[7:0] D[7:0] MPU Interface MPU Interface COMx SEGx
IOUT=1mA, VDD1=1.8V IOUT=-1mA, VDD1=1.8V
0.8 x VDD1 VSS1 -1.0 -3.0
V=0.85V VG=1.9V, V=0.19V
-- -- 70
Frame Frequency
FR
Duty=1/65, Vop=8.5V Ta = 25 C
Ver 1.4b
34/49
2009/02/04
ST7567
Current consumption: During Display, with internal power system, current consumed by whole IC (bare die). Test Pattern Symbol Condition VDD1=VDD2=VDD3=3.0V, Display Pattern: SNOW (Static) ISS Booster X5 VOP = 8.5 V, Bias=1/9 Ta=25 C VDD1=VDD2=VDD3=3.0V, Display OFF ISS Booster X5 VOP = 8.5 V, Bias=1/9 Ta=25 C Power Down Note: ISS VDD1=VDD2=VDD3=3.0V, Ta=25 C

Rating Min. Typ. Max.
Unit
Note
--
150
300
A
--
95
190
uA
--
8
16
A
The Current Consumption is DC characteristics
Ver 1.4b
35/49
2009/02/04
ST7567
14. TIMING CHARACTERISTICS
System Bus Timing for 6800 Series MPU
(VDD1 = 3.3V , Ta =25 C) Item Address setup time Address hold time System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) Write data setup time Write data hold time Read data access time Read data output disable time D[7:0] E Signal A0 Symbol tAW6 tAH6 tCYC6 tEWLW tEWHW tEWLR tEWHR tDS6 tDH6 tACC6 tOH6 CL = 16 pF CL = 16 pF Condition Min. 0 10 240 80 80 80 140 40 10 -- 5 -- -- 70 50
Max. -- -- -- -- -- --
Unit
ns
(VDD1 = 2.8V , Ta =25 C) Item Address setup time Address hold time System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) Write data setup time Write data hold time Read data access time Read data output disable time D[7:0] E Signal A0 Symbol tAW6 tAH6 tCYC6 tEWLW tEWHW tEWLR tEWHR tDS6 tDH6 tACC6 tOH6 CL = 16 pF CL = 16 pF Condition Min. 0 0 400 220 180 220 180 40 20 -- 10 Max. -- -- -- -- -- -- -- -- -- 140 100 ns Unit
Ver 1.4b
36/49
2009/02/04
ST7567
(VDD1 = 1.8V , Ta =25 C) Item Address setup time Address hold time System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) Write data setup time Write data hold time Read data access time Read data output disable time D[7:0] E Signal A0 Symbol tAW6 tAH6 tCYC6 tEWLW tEWHW tEWLR tEWHR tDS6 tDH6 tACC6 tOH6 CL = 16 pF CL = 16 pF Condition Min. 0 0 640 360 280 360 280 80 20 -- 10 Max. -- -- -- -- -- -- -- -- -- 240 200 ns Unit
*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr + tf) (tCYC6 - tEWLW - tEWHW) for (tr + tf) (tCYC6 - tEWLR - tEWHR) are specified. *2 All timing is specified using 20% and 80% of VDD1 as the reference. *3 tEWLW and tEWLR are specified as the overlap between CSB being "L" and E.
Ver 1.4b
37/49
2009/02/04
ST7567
System Bus Timing for 8080 Series MPU
(VDD1 = 3.3V , Ta =25 C) Item Address setup time Address hold time System cycle time /WR L pulse width (WRITE) /WR H pulse width (WRITE) /RD L pulse width (READ) /RD H pulse width (READ) WRITE Data setup time WRITE Data hold time READ access time READ Output disable time D[7:0] RD /WR Signal A0 Symbol tAW8 tAH8 tCYC8 tCCLW tCCHW tCCLR tCCHR tDS8 tDH8 tACC8 tOH8 CL = 16 pF CL = 16 pF Condition Min. 0 10 240 80 80 140 80 40 20 -- 5 -- -- 70 50
Max. -- -- -- -- -- --
Unit
ns
(VDD1 = 2.8V , Ta =25 C) Item Address setup time Address hold time System cycle time /WR L pulse width (WRITE) /WR H pulse width (WRITE) /RD L pulse width (READ) /RD H pulse width (READ) WRITE Data setup time WRITE Data hold time READ access time READ Output disable time D[7:0] RD /WR Signal A0 Symbol tAW8 tAH8 tCYC8 tCCLW tCCHW tCCLR tCCHR tDS8 tDH8 tACC8 tOH8 CL = 16 pF CL = 16 pF Condition Min. 0 0 400 220 180 220 180 40 20 -- 10 Max. -- -- -- -- -- -- -- -- -- 140 100 ns Unit
Ver 1.4b
38/49
2009/02/04
ST7567
(VDD1 = 1.8V , Ta =25 C) Item Address setup time Address hold time System cycle time /WR L pulse width (WRITE) /WR H pulse width (WRITE) /RD L pulse width (READ) /RD H pulse width (READ) WRITE Data setup time WRITE Data hold time READ access time READ Output disable time D[7:0] RD /WR Signal A0 Symbol tAW8 tAH8 tCYC8 tCCLW tCCHW tCCLR tCCHR tDS8 tDH8 tACC8 tOH8 CL = 16 pF CL = 16 pF Condition Min. 0 0 640 360 280 360 280 80 20 -- 10 -- -- 240 200 Max. -- -- -- -- -- -- ns Unit
*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr + tf) (tCYC8 - tCCLW - tCCHW) for (tr + tf) (tCYC8 - tCCLR - tCCHR) are specified. *2 All timing is specified using 20% and 80% of VDD1 as the reference. *3 tCCLW and tCCLR are specified as the overlap between CSB being "L" and WR and RD being at the "L" level.
Ver 1.4b
39/49
2009/02/04
ST7567
System Bus Timing for 4-Line Serial Interface
First bit
Last bit
(VDD1 = 3.3V , Ta =25 C)
Item Serial clock period SCLK "H" pulse width SCLK "L" pulse width Address setup time Address hold time Data setup time Data hold time CSB-SCLK time CSB-SCLK time
Signal SCLK
Symbol tSCYC tSHW tSLW
Condition
Min. 50 25 25 20 10 20 10 20 40
Max. -- -- -- -- -- -- -- -- --
Unit
A0
tSAS tSAH tSDS tSDH tCSS tCSH
ns
SDA
CSB
(VDD1 = 2.8V , Ta =25 C) Item Serial clock period SCLK "H" pulse width SCLK "L" pulse width Address setup time Address hold time Data setup time Data hold time CSB-SCLK time CSB-SCLK time A0 SCLK Signal Symbol tSCYC tSHW tSLW tSAS tSAH tSDS tSDH tCSS tCSH Condition Min. 100 50 50 30 20 30 20 30 60 Max. -- -- -- -- -- -- -- -- -- ns Unit
SDA
CSB
Ver 1.4b
40/49
2009/02/04
ST7567
(VDD1 = 1.8V , Ta =25 C) Item Serial clock period SCLK "H" pulse width SCLK "L" pulse width Address setup time Address hold time Data setup time Data hold time CSB-SCLK time CSB-SCLK time A0 SCLK Signal Symbol tSCYC tSHW tSLW tSAS tSAH tSDS tSDH tCSS tCSH Condition Min. 200 80 80 60 30 60 30 40 100 Max. -- -- -- -- -- -- -- -- -- ns Unit
SDA
CSB
*1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD1 as the standard.
Ver 1.4b
41/49
2009/02/04
ST7567
Hardware Reset Timing
tRW
RSTB
tR
Internal Status
During Reset ...
Reset Finished
(VDD1 = 3.3V , Ta =25 C) Item Reset time Reset "L" pulse width Symbol tR tRW Condition Min. -- 1.0 Max. 1.0 -- Unit us
(VDD1 = 2.8V , Ta =25 C) Item Reset time Reset "L" pulse width Symbol tR tRW Condition Min. -- 2.0 Max. 2.0 -- Unit us
(VDD1 = 1.8V , Ta =25 C) Item Reset time Reset "L" pulse width Symbol tR tRW Condition Min. -- 3.0 Max. 3.0 -- Unit us
Ver 1.4b
42/49
2009/02/04
ST7567
APPLICATION NOTE
Application Circuits
88 89 86 87
6800 Interface
Booster X4 Vop: 5.5~6.7V Duty: 1/33 Bias: 1/6
76
77
75
C1=0.1uF~1uF (6V)
VDD3 VDD2 VDD1
C2=0.1uF~1uF (16V) C3=10pF~100pF (6V)
108 109 110
SEL2 VSSL SEL1 PSB C86 VDDH VSSL
64
59
56
Vref T[5] T[4] T[3] T[2] T[1] TFCOM T[8] T[7] T[6] VGout VGs VGin VGin VMO VMO XV0in XV0in
TP3 C1
54
VG
XV0
TP1 C2 TP2
47
XV0s XV0out XV0out V0out V0out
42
V0s V0in V0in VSS2 VSS2 VSS2 VSS3 VSS1
V0
R1 Default NC
VSS
34
VSS1 VDD3 VDD2 VDD2 VDD2 VDD1 VDD1 D7 D6 D5 D4 D3 D2 D1
VDD
D7 D6 D5 D4 D3 D2 D1 D0 E R/W A0 RSTB CSB
C3 Default NC
20
D0 VDDH ERD RWR
240 241 242
A0 RSTB CSB
13
CL
11
12
261
260
1
2
Ver 1.4b
43/49
2009/02/04
ST7567
88 89 86 87
8080 Interface
Booster X4 Vop: 6.0~7.5V Duty: 1/55 Bias: 1/6
76
77
75
C1=0.1uF~1uF (6V)
VDD3 VDD2 VDD1
C2=0.1uF~1uF (16V) C3=10pF~100pF (6V)
108 109 110
SEL2 VSSL SEL1 PSB C86 VDDH VSSL
64
59
56
Vref T[5] T[4] T[3] T[2] T[1] TFCOM T[8] T[7] T[6] VGout VGs VGin VGin VMO VMO XV0in XV0in
TP3 C1
54
VG
XV0
TP1 C2 TP2
47
XV0s XV0out XV0out V0out V0out
42
V0s V0in V0in VSS2 VSS2 VSS2 VSS3 VSS1
V0
R1 Default NC
VSS
34
VSS1 VDD3 VDD2 VDD2 VDD2 VDD1 VDD1 D7 D6 D5 D4 D3 D2 D1
VDD
D7 D6 D5 D4 D3 D2 D1 D0 /RD /RW A0 RSTB CSB
C3 Default NC
20
D0 VDDH ERD RWR
240 241 242
A0 RSTB CSB
13
CL
11
12
261
260
1
2
Ver 1.4b
44/49
2009/02/04
ST7567
Ver 1.4b
45/49
2009/02/04
ST7567
Selection of Application Voltage
Referential LCD Module Setting VDD1=2.8V, VDD2=VDD3=2.8V, Panel Size=1.4", Ta=25 C Duty 1/65 Booster X5 Vop 8.5 ~ 9.5 6.5 ~ 7.5 7.5 ~ 8.5 5.5 ~ 6.5 7.5 ~ 8.5 5.5 ~ 6.5 5.5 ~ 6.5 4.5 ~ 5.5 Bias 1/9 1/7 1/8 1/6 1/8 1/6 1/6 1/5
1/55
X5
1/49
X5
1/33
X5
It is recommended to reserve some range for user adjustment and temperature effect. Note: Positive Booster: (VDD2 x BL x BE) V0 or (VDD2 x BL x BE) Vop; Negative Booster: [-VDD2 x (BL - 1) x BE] XV0 or [VDD2 x (BL - 1) x BE] (Vop - VG), where VG = Vop x 2 / N; Vop requirement: [VDD2 x (BL - 1) x BE] [Vop x (N - 2) / N] or [Vop VDD2 x (BL - 1) x BE x N / (N - 2)]. BL is the booster stage and BE is the booster efficiency. Referential values are listed below: (assume VDD2=VDD3=2.8V) Module Size 1.4": BE=80% (Typical); Module Size = 1.4"~1.8": BE=76% (Typical). Actual BE should be determined by module loading and ITO resistance value. 1.6 VG < VDD2. Recommend VG is: VDD2-VG around 0.5~0.8V. VM=VG/2 and 0.8V VM < VDD2. The worse condition should be considered: Low temperature effect and display on with snow pattern on panel (max: 1.8").
Ver 1.4b
46/49
2009/02/04
ST7567
ITO Layout Reference
The reference ITO layout is shown below:
XV0out XV0out VGout VDD1 VDD1 VDD2 VDD2 VDD2 VDD3 XV0in XV0in V0out V0out VSS1 VSS1 VSS3 VSS2 VSS2 VSS2 XV0s VGin VGin V0in V0in VGs V0s
The equivalent circuit is shown below: V0,,, XV0 & VG V0 XV0 & VG V0 XV0 & VG VDD VDD VDD VSS VSS VSS
Ideal Layout: => R4=0 Ohm. R2>>R1>R3. Acceptable Layout: => R40. R2>>R1>R3>R4. Not Acceptable: => R4 (R1 or R2 or R3).
Ideal Layout: => R4=0 Ohm. R3>>R1>R2. Acceptable Layout: => R40. R3>>R1>R2>R4. Not Acceptable: => R4 (R1 or R2 or R3).
Ideal Layout: => R4=0 Ohm. R2>>R1>R3. Acceptable Layout: => R40. R2>>R1>R3>R4. Not Acceptable: => R4 (R1 or R2 or R3).
Ver 1.4b
47/49
2009/02/04
ST7567
ITO Layout Guide
The reference ITO layout is shown below:
Note: Recommend ITO resistance refer to Page11.
Ver 1.4b
48/49
2009/02/04
ST7567
REVERSION HISTORY
Version
0.0 Rearrange section. 0.0a 2007/06/2 Rewrite description. Add Application Circuit. Add pad location. Redraw application circuit (remove VMO capacitor). 0.1 2007/06/19 Reserve R1 for abnormal power off procedure. Rewrite description. Add more application notes. 0.1a 1.0 1.0a 2008/01/21 2008/02/15 2008/02/19 Fix Thermal Gradient. Update DC Characteristics. Update Timing Characteristic. Update Chip Thickness. Add Pass Number. Modify outline description. Fix some arrow direction in Block Diagram. 1.1 2008/03/21 Add more information of operation flow. Change DC Characteristics of VDD1 range: 1.7V ~ 3.3V. Add ITO layout note. Modify Voltage Booster Level. Add Application Voltage Guide. 1.2 2008/06/26 Modify storage temperature. Modify Current Consumption of DC Characteristics. Modify temperature range of Timing Characteristic. 1.3 1.3a 1.4 1.4a 1.4b 2008/07/11 2008/07/22 2008/10/16 2008/11/06 2009/02/04 Add ITO Layout Guide. Modify Power ON Sequence. Add Cap. C3 in Application Note. Modify ITO Layout Guide. Modify Application note. Modify ITO Layout Guide. Add description of output pin name in different duty.
Date
Description
Ver 1.4b
49/49
2009/02/04


▲Up To Search▲   

 
Price & Availability of ST7567

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X